### An In-Situ Microcoaxial Fabrication and Attachment Strategy

Daniela Torres iMAPS NE MEMS Session

May 1st 2018





### **Outline of Presentation**

#### Introduction

- High Frequency Band, Modules, & Advantages
- Packaging RF Modules
- Microcoaxial Cables for RF Modules
- Thesis Contributions

#### Methods & Results

- Microcoaxial Fabrication
- 2-Port RF Characterization
- 4-Port Cross-Talk Tests

#### **Conclusions & Future Work**





### **RF** and Microwave Frequencies



RF: 30 MHz - 300 MHz

Microwaves: 300 MHz - 300 GHz

D. M. Pozar, Microwave Engineering, Addison-Wesley, 1990.





### **RF** and Microwave Applications

| Application           | Example                 | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Communication Systems | FM, TV, Cell            | 88 MHz – 960 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Communication Systems | ISM                     | 902 MHz – 5.85 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Antenna and Radar     | UWB Imaging             | 3.10-10.6 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Antenna and Radar     | L-F Bands               | 1-140 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Navigation & Weather  | GPS                     | 1227.6-1575.42 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Medical               | Diagnostics & Wearables | 30-300 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       |                         | Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(CO)<br>Headbands<br>(C)<br>Headbands<br>(C)<br>Headbands<br>(C)<br>Headbands<br>(C)<br>Headbands<br>(C)<br>Headbands<br>(C)<br>Headbands<br>(C)<br>Headbands<br>(C |











School of Engineering 

### RF and Microwave Advantages

| Application           | Advantage                      |
|-----------------------|--------------------------------|
| Communication Systems | Higher Bandwidth               |
| Antenna and Radar     | Target Detection               |
| Navigation & Weather  | Penetration Through Ionosphere |
| Medical               | Sense Molecular Resonances     |

RF Modules Make up 66% of System in Package (SiP) Components

Yole, "Status of Advanced Packaging Industry 2017," Sonoma, 2017.







School of Engineering 5

### Challenges of Packaging RF Modules

| Key Challenge                   | Why?                                                     |
|---------------------------------|----------------------------------------------------------|
| Packaging Introduces Parasitics | Unwanted inductance at high frequencies                  |
| Impedance Mismatch              | Inability to distribute power or signals efficiently     |
| Electromagnetic Interference    | Cross-talk contamination                                 |
| Heterogeneous Integration       | Desire rapid methods for complex miniature systems (SiP) |

Arun Chandrasekhar, "Characterization, Modeling and Design of Bond-Wire Interconnects for Chip-Package Co-Design," in European Microwave Conference, Munich, 2003.

E. A. Sanjuan and S. S. Cahill, "Scaling Quad-Flat No-Leads Package Performance to E-Band Frequencies," in IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS2013), Tel Aviv, 2013.

S. H. J. DeLaCruz, "Improvements of System-in-Package Integration and Electrical Performance Using BVA Wire Bonding," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 7, no. 7, pp. 1020-1034, July 2017.





### Current Packaging Techniques for RF Modules

| Method          | Advantage                                                        | Disadvantage                                                                |
|-----------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|
| SiGe            | Common in Semiconductor Industry<br>Good Electrical Performance  | Slow integration                                                            |
| GaAs            | Better RF properties than Si >250 GHz<br>Good thermal properties | Expensive, no native oxide,<br>Slow integration                             |
| Flip Chip       | Good for Multi-Chip Modules (MCMs)                               | May introduce up to 0.4 dB of insertion loss (IL)                           |
| Wire<br>Bonding | Good for MCMs<br>More rapid and easy to integrate                | May introduce up to 2.2 dB<br>of IL, 0 to -20 dB cross-talk<br>up to 14 GHz |

C. H. J. Poh, "Packaging Effects of Multiple X-Band SiGe LNAs Embedded in an Organic LCP Substrate," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 8, pp. 1351-1360, 2012

B. Goettel, "Packaging Solution for a Millimeter-Wave System-on-Chip Radar," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 1, pp. 73-81, 2018







### Microcoaxial Cables for RF Modules

- Utilizes wire bonding and existing fabrication methods to integrate microcoax for signal distribution
- Fabricated micro-coax with target impedances of  $40-50\Omega$
- Cross-talk did not exceed -40 dB up to 26.5 GHz
- Total wire diameters ~100µm



Fabrication Process First Introduced in: S. S. Cahill, E. A. Sanjuan and L. Levine, "Development of 100+ GHz Highfrequency MicroCoax Wire Bonds," in iMAPS, 2006.





### Microcoaxial Cables for RF Modules

Utilizes new fabrication methods and attachment strategies to integrate microcoax for power and signal distribution. Power coax has not been explored yet in literature.





Engineering





### Thesis Contributions

#### Goals

- Expedite integration and characterization of micro-coaxial cables for MMS.
- Rapid and uses existing technology.

#### Accomplishments

- Fabricated coax for power and signal distribution
- Explored new dielectric options such as ALD HfO<sub>2</sub> for thin (100 nm) dielectrics
- Determined theoretical electrical properties of different cables from fabrication process and compared to RF measurements
- Cross-Talk Analysis of different wires



School of Engineering





### Types of Microcoax for MMS System

#### **Signal Coax**

- Previously explored in literature
- Target Impedances Between 30-70Ω
- Impedance determined by matching

#### **Power Coax**

- Not previously explored
- Target Low impedances  $< 10\Omega$
- Impedance determined by Power Distribution Network (PDN)







### Types of Microcoax for MMS System

#### Core Radius (r<sub>c</sub>)

- In-Situ Fabrication Determined by existing wire bond core
- MMS Determined by wire manufacturers

#### **Dielectric Thickness** (t<sub>d</sub>)

- Determined by target impedance
- Assume for now lossless cable

#### Shield Thickness (t<sub>s</sub>)

- For now assume that core and shield resistances are equal
- Neglect frequency dependence for preliminary design

$$t_d = r_c (e^{Z_0 \sqrt{k}/60} - 1)$$

$$t_{s} = \sqrt{r_{c}^{2}(\frac{\sigma_{c}}{\sigma_{s}}) + (r_{c} + t_{d})^{2}} - (r_{c} + t_{d})$$



### In-Situ Attachment and Fabrication of Microcoax









### Power Coax With HfO<sub>2</sub> Dielectric

#### Core

25.4 µm Diameter Au Ball Bonded Wire

#### Dielectric

100 nm HfO<sub>2</sub> Deposited by Atomic Layer Deposition (ALD)

#### Laser

0.220 W and 248 nm wavelength

with 10 Pulses

**Adhesion Layer** 

Sputtered 20 nm Cr & 200 nm Au (x2)

#### Shield

5.0 µm Electroplated Au



School of Engineering



### Power Coax With Parylene C Dielectric

#### Core

 $25.4\ \mu m$  Diameter Au Ball Bonded Wire

#### Dielectric

 $1.0\,\mu m$  Vapor Coated Parylene C

#### Laser

0.220 W and 248 nm wavelength

with 20 Pulses

#### **Adhesion Layer**

Sputtered 20 nm Cr & 200 nm Au (x2)

#### Shield

5.0 µm Electroplated Au





### Signal Coax With Parylene C Dielectric

#### Core

 $25.4\ \mu m$  Diameter Au Ball Bonded Wire

#### Dielectric

 $38\,\mu m$  Vapor Coated Parylene C

#### Laser

 $0.220\ W$  and  $248\ nm$  wavelength

with 420 Pulses

#### **Adhesion Layer**

Sputtered 20 nm Cr & 200 nm Au (x2)

#### Shield

 $5.0\,\mu m$  Electroplated Au





### **Fabrication Summary**

|            | Со                                     | Core Thickness<br>(µm)                        |                                         | kness Wi                  | Wire Length - x<br>(mm)            |  |
|------------|----------------------------------------|-----------------------------------------------|-----------------------------------------|---------------------------|------------------------------------|--|
| All Wires  | 8                                      | 24-25                                         | 5-6                                     |                           | 3.5-3.7                            |  |
| Dielectric | Dielectric<br>Const. (ε <sub>r</sub> ) | Magnetic<br>Permeability<br>(µ <sub>r</sub> ) | Thickness<br>(µm)                       | Wave Speed<br>(m/s)       | Freq. for ¼<br>Wavelength<br>(GHz) |  |
| Parylene C | 2.95-3.15<br>(~<1GHz)                  | 1                                             | Power:<br>0.8-1.2<br>Signal:<br>37-46.5 | 1.70-1.75·10 <sup>8</sup> | ~12                                |  |
| HfO2       | 16-40<br>(~<1GHz)                      | 1                                             | Power: 0.10                             | 4.74-7.50·10 <sup>7</sup> | ~5                                 |  |

Thickness measurements taken from ellipsometer, profilometer, and FIB measurements. Dielectric constants taken from literature and from pinhole

measurements.





### Expected C, L, Z<sub>0</sub> From Fabrication

| Dielectric | Capacitance (pF)                      | Inductance (pH)                        | $\mathbf{Z}_{0}\left( \Omega ight)$ |
|------------|---------------------------------------|----------------------------------------|-------------------------------------|
| Parylene C | Power: 5.63-9.29<br>Signal: 0.36-0.48 | Power: 48.87-75.56<br>Signal: 943-1172 | Power: 2.29-3.66<br>Signal: 44-57   |
| HfO2       | Power: 375-1074                       | Power: 5-6                             | Power: 0.07-0.13                    |



D. M. Pozar, Microwave Engineering, Addison-Wesley, 1990.

Overall, low inductance and low characteristic impedance is expected for power coax. For signal coax a characteristic impedance of  $50\Omega$  is expected.



School of Engineering

### **DR PER** 18

### **Electrical Characterization Process Flow**







### **De-Embedding**

For Now Result to Modeling Substrate and Fitting S<sub>Measured</sub> to Models.



## $\left[S_{Measured}\right] = \left[S_{FA}\right] \left[S_{DUT}\right] \left[S_{FB}\right]$

HP, "S-Parameters Theory and Applications"

 $\mathbf{D} \mathbf{R} \wedge \mathbf{P} \mathbf{E} \mathbf{R}_{20}$ 



### Advanced Design System (ADS) Circuit Modeling



### 2 Port RF Results Power Coax With HfO<sub>2</sub>



- S<sub>22</sub> Reflection Coefficient at Measured Port 2
- $S_{11}$  Reflection Coefficient at Simulated Port 1
- S<sub>22</sub> Reflection Coefficient at Simulated Port 1



### freq (10.00MHz to 12.00GHz)



Engineering

### 2 Port RF Results Power Coax With HfO<sub>2</sub>



freq, Hz



### 2 Port RF Results Power Coax With HfO<sub>2</sub>

#### Measured Set of 3 Wires

| Method          | C/l (pF/mm) | $\mathbf{Z}_{0}\left( \Omega ight)$ | L/l (pH/mm) |
|-----------------|-------------|-------------------------------------|-------------|
| Analytical      | 104-298     | 0.07-0.13                           | 1.40-1.70   |
| Non-De-embedded | 145±3.0     | 0.17±0.00                           | 214±20      |
|                 | (LM)        | (TL)                                | (LM)        |
| De-embedded     | 139±3.0     | 0.12±0.00                           | 48±56       |
|                 | (LM)        | (TL)                                | (LM)        |





### 2 Port RF Results Power Coax With Parylene C

- S<sub>11</sub> Reflection Coefficient at Measured Port 1
- S<sub>22</sub> Reflection Coefficient at Measured Port 2
- S<sub>11</sub> Reflection Coefficient at Simulated Port 1
- S<sub>22</sub> Reflection Coefficient at Simulated Port 1



freq (10.00MHz to 12.00GHz)





DRAPER

26

**Tuffts** School of UNIVERSITY School of

### 2 Port RF Results Power Coax With Parylene C

#### Measured Set of 13 Wires

| Method          | C/l (pF/mm) | $\mathbf{Z}_{0}\left( \Omega ight)$ | L/l (pH/mm) |
|-----------------|-------------|-------------------------------------|-------------|
| Analytical      | 1.60-2.60   | 2.30-3.70                           | 13.6-21.0   |
| Non-De-embedded | 1.80±0.06   | 3.40±0.10                           | 223±15      |
|                 | (LM)        | (TL)                                | (LM)        |
| De-embedded     | 1.50±0.07   | 4.20±0.75                           | 97±38       |
|                 | (LM)        | (TL)                                | (LM)        |





### 2 Port RF Results Signal Coax With Parylene C

- S<sub>11</sub> Reflection Coefficient at Measured Port 1
- S<sub>22</sub> Reflection Coefficient at Measured Port 2
- S<sub>11</sub> Reflection Coefficient at Simulated Port 1
- S<sub>22</sub> Reflection Coefficient at Simulated Port 1





freq (10.00MHz to 12.00GHz)





### 2 Port RF Results Signal Coax With Parylene C



freq, Hz



### 2 Port RF Results Parameters

#### Measured Set of 9 Wires

| Method          | $\mathbf{Z}_{0}\left( \Omega ight)$ |
|-----------------|-------------------------------------|
| Analytical      | 44-57                               |
| Non-De-embedded | 42±1.0<br>(TL)                      |
| De-embedded     | 63±3.0<br>(TL)                      |





### **Cross-Talk Results**



All Wire Pairs Have a Pitch of 0.5 mm

31



School of Engineering

### Conclusions

#### Fabrication

- Fabricated power and signal coax with conformal film layers and targeted geometry
- Yield per board > 3 wires, higher (>9 wires) for thicker dielectrics

#### 2-Port RF Characterization

- Good fit between measured s-parameters and simulated s-parameters
- Met impedance requirements for both power (<10 $\Omega$ ) and signal wires (~50 $\Omega$ )

| Wire Type              | Meas. C (pF/mm) | Anal. C (pF/mm) | Meas. $Z_0(\Omega)$ | Anal. $Z_0(\Omega)$ |
|------------------------|-----------------|-----------------|---------------------|---------------------|
| Power HfO <sub>2</sub> | 139-145         | 104-298         | 0.12-0.17           | 0.07-0.13           |
| Power Parylene C       | 1.50-1.80       | 1.60-2.60       | 3.40-4.20           | 2.30-3.70           |
| Signal Parylene C      |                 | 0.36-0.48       | 42-63               | 44-57               |

• Large deviation for inductance by ~100 pH/mm between measured and analytical

#### **4-Port Cross-Talk Measurements**

- Cross-talk decreased up to 50 dB for shielded wires compared to GSG bare wires at 1 GHz
- Cross-talk did not exceed -35 dB for shielded wires up to 26.5 GHz



School of Engineering



### Future Work

#### Fabrication

- Explore other conformal films or introduce new fixturing in sputter tool
- Further optimize fabrication cleaning, electroplating, and masking

#### 2-Port RF Characterization

- Remove wires and 2-port test substrate
- Compare electromagnetic simulations to analytical and measured results
- Consider simpler RF board
- Include inductance effects of board and wire joints

#### **4-Port Cross-Talk Measurements**

- Test wires with varying shield quality
- Study resonant modes of cable and substrate

#### Other

- Characterize thermal effects on CTE mismatch or wire impedance
- Characterize mechanical reliability through wire pull and shear tests



### Acknowledgements

#### Thank you to:

- Robert White Tufts ME Advisor
- Caprice Gray Draper Advisor & MMS PI
- Marc Hodes Thesis Committee
- Tony Kopa MMS RF Task Lead
- Peter Lewis MMS Integration Team
- Sara Baron MMS Wire Fabrication Task Lead
- Brian Smith Heterogeneous Microsystems Group Leader
- Yen Wah Wire Bonding Technician
- Mark Singleton Lab Manager
- Prasit Sricharoenchaikit External Contractor
- Lab Group: Kevin Ligonde, Niko Kastor, Henry Shi, Jim Vlahakis

**Questions?** 





### Appendix A – Laser Etching Pulse Optimization



By: Tara Sarathi



### D R 🖊 P E R 35

### Appendix B – Pinhole Tests Parylene C

|          | Tested 112 electrodes |          |                    |               |                   |               |             |             |                           |
|----------|-----------------------|----------|--------------------|---------------|-------------------|---------------|-------------|-------------|---------------------------|
| Expected | Measured              | Measured | Measured           | Measured      | Measured          | Measured      | Theoretical | Theoretical | Theoretical –<br>Measured |
| Diameter | Diameter              | Radius   | Area (A)           | Thickness (d) | Area (A)          | Thickness (d) | Capacitance | Capacitance | Capacitance               |
| (µm)     | (µm)                  | (µm)     | (µm <sup>2</sup> ) | (µm)          | (m <sup>2</sup> ) | (m)           | <b>(F)</b>  | (pF)        | ( <b>pF</b> )             |
| 127      | 141.94                | 70.97    | 15823.39           | 3.138         | 1.58E-08          | 3.14E-06      | 1.41E-13    | 0.141       | 0.224                     |
| 254      | 278.23                | 139.115  | 60799.19           | 3.138         | 6.08E-08          | 3.14E-06      | 5.40E-13    | 0.54        | 0.227                     |
| 381      | 398.39                | 199.195  | 124654.1           | 3.138         | 1.25E-07          | 3.14E-06      | 1.11E-12    | 1.11        | 0.27                      |
| 508      | 530.65                | 265.325  | 221159.8           | 3.138         | 2.21E-07          | 3.14E-06      | 1.97E-12    | 1.97        | 0.23                      |

| Expected | Measured<br>Capacitance | Std Dev | Measured<br>Resistance | Measured       |
|----------|-------------------------|---------|------------------------|----------------|
| Diameter | ( <b>pF</b> )           |         | (GΩ)                   | ٤ <sub>r</sub> |
| 5 Mil    | 0.365                   | 0.033   | 21.73                  | 8.18           |
| 10 Mil   | 0.767                   | 0.025   | 6.06                   | 4.47           |
| 15 Mil   | 1.38                    | 0.026   | 2.65                   | 3.92           |
| 20 Mil   | 2.2                     | 0.026   | 1.58                   | 3.53           |



UNIVER



 $C = \frac{\mathcal{C}_0 \mathcal{C}_r A}{1}$ d

 $8.85 \times 10^{-12} F/m$ 

#### er vs electrode diameter



Stray may be due to:

- Parallel Capacitors

- Additional Diameter (mask)

- Thinned Dielectric (Probing)



School of Engineering

<sup>`</sup> 36

### Appendix C – TLM Parameters ADS

| Board                          | Z <sub>0</sub><br>Coax<br>(Ω) | K<br>Coax | A Coax<br>(dB/m) | TanD<br>Coax | Z <sub>0</sub><br>Masked K<br>Sub<br>(Ω) | Masked <sup>4</sup><br>Sub | A Masked<br>Sub<br>(dB/m) | TanD<br>Masked<br>Sub | $Z_0$ unmasked<br>Sub ( $\Omega$ ) | K unmasked<br>Sub | A unmasked<br>Sub<br>(dB/m) | TanD<br>unmasked<br>Sub |
|--------------------------------|-------------------------------|-----------|------------------|--------------|------------------------------------------|----------------------------|---------------------------|-----------------------|------------------------------------|-------------------|-----------------------------|-------------------------|
| Power<br>Parylene<br>(MMS003)  | 4.21                          | 3.80      | 236.3            | 0.0005       | 53.60                                    | 4.22                       | 5.46                      | 0.3462                | 51.07                              | 8.21              | 306.16                      | 0.0384                  |
| Power HfO2<br>(MMS004)         | 0.120                         | 20.82     | 0.2              | 0.1          | 42.18                                    | 5.27                       | 40.8                      | 0.2333                | 49.59                              | 5.92              | 19                          | 0                       |
| Signal<br>Parylene<br>(MMS007) | 63.2                          | 2.69      | 11.8             | 0.0005       | 91.83                                    | 1.61                       | 7.19                      | 0.0409                | 61.60                              | 3.25              | 22.30                       | 0.0039                  |





### Appendix D– Frequency Dependence on R and L

| Parameter      | Value                                                    | Units      |
|----------------|----------------------------------------------------------|------------|
| r <sub>c</sub> | Core Radius                                              | m          |
| t <sub>d</sub> | Dielectric thickness                                     | m          |
| t <sub>s</sub> | Shield thickness                                         |            |
| ρ <sub>c</sub> | Core Resistivity                                         | $\Omega$ m |
| ρ <sub>s</sub> | Shield Resistivity                                       | $\Omega$ m |
| μ              | Magnetic Permittivity Free Space = $4\pi \cdot 10^{-7}$  | H/m        |
| μ <sub>r</sub> | Magnetic Permittivity Constant = 1                       |            |
| <b>Е</b> 0     | Electric Permittivity Free Space = $8.85 \cdot 10^{-12}$ | F/m        |
| ٤ <sub>r</sub> | Dielectric Constant                                      |            |
| f              | Frequency                                                | Hz         |
| σ <sub>c</sub> | Core Conductivity                                        | S/m        |
| σ              | Shield Conductivity                                      | S/m        |
| l              | Wire Length                                              | m          |





# Appendix E– Frequency Dependence on R and L (Cont.)





### Appendix F– Smith Chart





### Appendix G – Power Distribution Network

- PDN is essentially a circuit model of important contributing components to power distribution
- MMS has done case studies on several PDN
- A PDN is shown to the right that was used as a preliminary analysis
- Chip capacitance and R and L of microcoax were the only components considered
- Power requirements of the Kintex 7 FPGA were known to be 30 mV voltage ripple and max current draw of 3.4 A
- ADS circuit models were used to determine limits for R and L









### Appendix H – Power Distribution Network

Given power requirements and 16 connections needed to package a Kintex 7 FPGA total allowable Zpdn may not exceed  $10m\Omega$ 



R per wire is 160 m $\Omega$  and L per wire is 320 pH



### Appendix I – Power Distribution Network

Second analysis shows that if we lower R per wire we can tolerate a higher wire inductance but a higher L introduces new resonances Zpdn vs. Frequency (<1 GHz) Voltage Ripple vs. Time 0.020 50-Voltage Ripple (mV) 0.018 45-0.016-40-0.014-35-Z<sub>pdm</sub> (Ω) 0.012-30-0.010-25-0.008-20-0.006 15-0.004 10-0.002-5-0.000-0-250 1E3 1E4 1E5 1E6 1E7 1E8 1E9 150 200 288 Time (nsec) Frequency (Hz)

R per wire is 80 m $\Omega$  and L per wire is 380 pH Target R and L from both cases are 3.2-3.6 m $\Omega$ /mm and 12.8-15 pH/mm





### Appendix J – Power Distribution Network

| Paramete<br>r  | Target<br>Value | Actual<br>Value | Notes                                                                                  |
|----------------|-----------------|-----------------|----------------------------------------------------------------------------------------|
| r <sub>c</sub> | 41µm            | 62.5 µm         | Determined using a core resistance of 3.20 $m\Omega/mm$ , <b>copper core</b> material, |
| t <sub>d</sub> | 3.0 µm          | 12 µm           | Determined using L <sub>Budget</sub> of 15 pH/mm                                       |
| t <sub>s</sub> | 28 µm           | 55 µm           | Determined using a shield resistance of 3.20 $m\Omega/mm$ , gold shield material       |



Engineering

UNIVER





### Appendix K – RF Results on Other MMS Wires



#### Individual Cell Model 5 mm long







Appendix L – RF Results on Other MMS Wires

|                   | L (pH/mm) | C (pF/mm) | $\mathrm{Z}_{0}\left(\Omega ight)$ | R(mΩ/mm) |
|-------------------|-----------|-----------|------------------------------------|----------|
| Analytical        | 40        | 0.98      | 5.98                               | 2.30     |
| Measured<br>(VNA) | 40        | 0.93      | 6.56                               | 2.00     |
| Simulated (HFSS)  | 50        | 0.94      | 7.30                               |          |

Inductance target exceeded and resistance may be exceeded at higher frequencies. Thinner dielectric is needed.

By: Tony Kopa





### Appendix M – TEM Mode of Cable



#### D. M. Pozar, Microwave Engineering, Addison-Wesley, 1990.

| Wire              | b/a      | kc       | c (m/s)   | $\mathbf{v_f}$ | er   | fc       |
|-------------------|----------|----------|-----------|----------------|------|----------|
| HfO2              | 1.007874 | 78431.37 | 61200000  | 0.16           | 28   | 1.44E+11 |
| Parylene C Power  | 1.07874  | 75757.58 | 172500000 | 0.45           | 3.05 | 1.19E+12 |
| Parylene C Signal | 3.992126 | 31545.74 | 172500000 | 0.45           | 3.05 | 4.96E+11 |



School of Engineering

Resonances in data may be from substrate only

### Appendix N – Crosstalk Adjacent Empty Launches

Spacing = 0.51 mm



 $\mathbf{D} \mathbf{R} \wedge \mathbf{P} \mathbf{E} \mathbf{R}$ 

48



### Appendix N – Crosstalk Across Empty Launches



![](_page_48_Picture_2.jpeg)

![](_page_48_Picture_3.jpeg)

### Cross-Talk Results Bare Wires – Prior Art

2 mm long Au Wire Bonds in GSG Configuration

![](_page_49_Figure_2.jpeg)

Arun Chandrasekhar, "Characterization, Modeling and Design of Bond-Wire Interconnects for Chip-Package Co-Design," in European Microwave Conference, Munich, 2003

![](_page_49_Picture_4.jpeg)

![](_page_49_Picture_5.jpeg)

### Cross-Talk Results Microcoax Wires – Prior Art

3 mm long 40 Ω Signal Coax 160 μm Wire Pitch

![](_page_50_Figure_2.jpeg)

S. S. Cahil, E. A. Sanjuan and L. Levine, "Development of 100+ GHz High-Frequency Micro Coax Wire Bonds," iMAPS

![](_page_50_Picture_4.jpeg)

![](_page_50_Picture_5.jpeg)

### Appendix O - 4 Port Test HFO<sub>2</sub>

![](_page_51_Figure_1.jpeg)

freq (10.00MHz to 28.50GHz)

![](_page_51_Picture_3.jpeg)

![](_page_51_Picture_4.jpeg)

### Appendix O -4 Port Test HFO<sub>2</sub>

![](_page_52_Figure_1.jpeg)

![](_page_52_Picture_2.jpeg)

### Appendix P – RF Board

![](_page_53_Figure_1.jpeg)

![](_page_53_Picture_2.jpeg)

![](_page_53_Picture_3.jpeg)

### Appendix Q - Other Fabrication Challenges

ALD Pt as a Seed Layer

![](_page_54_Picture_2.jpeg)

#### Lift Off Thin Films with PR

![](_page_54_Picture_4.jpeg)

#### **Optimizing Laser Etching and Pinhole Tests**

![](_page_54_Picture_6.jpeg)

UNIVERS

![](_page_54_Picture_7.jpeg)

![](_page_54_Picture_8.jpeg)

= 0.0000 Signal 8 = n.tens

### Importance of Conformal Adhesion Layers

#### **Evaporated Seed Layer**

![](_page_55_Picture_2.jpeg)

#### Sputtered Seed Layer (x1)

![](_page_55_Picture_4.jpeg)

#### Sputtered Seed Layer (x2)

![](_page_55_Picture_6.jpeg)

![](_page_55_Picture_7.jpeg)

School of Engineering

### Signal Coax Fabrication Challenges

#### **Laser Etching**

- Masking thick parylene C is challenging
- Residue formed due to heat spreading of laser and re-deposition of material onto surface

#### Non Suspended Wires

- Some wires are not suspended
- Asymmetric coaxial shield

![](_page_56_Picture_7.jpeg)

![](_page_56_Picture_8.jpeg)

![](_page_56_Picture_9.jpeg)

57

### 4 Port Cross-Talk ADS Simulation

| i i i SiPia                           | rameter Simul                         | ation 👘 🏧    | S-PARAMETERS                                     |
|---------------------------------------|---------------------------------------|--------------|--------------------------------------------------|
| Linearl                               | requency Sweep                        |              | 2172M                                            |
|                                       |                                       |              |                                                  |
|                                       |                                       | Star<br>Stor | 1=10 MHz<br>==================================== |
|                                       |                                       | Step         | j <b>-</b> · · · · · · · · · · ·                 |
|                                       |                                       |              |                                                  |
|                                       |                                       |              |                                                  |
|                                       |                                       | <u></u>      |                                                  |
| <b>⊪+-~~~</b>                         |                                       | <b>_</b>     | ━╈╋╋╢╴╴╴╴╴╸                                      |
| i i i i i i i i i i i i i i i i i i i |                                       | Teim         |                                                  |
| Termi 1                               | · · · · · · · · · · · · · · · · · · · | Teim 3       | <br>                                             |
| Z-50 0.1m                             |                                       | .Z=50        | יערייייייייי<br>Dim                              |
|                                       | <b></b>                               |              |                                                  |
|                                       |                                       |              |                                                  |
| 11                                    | SIP<br>SUP                            |              | ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━          |
|                                       | SIPT                                  |              |                                                  |
| Term 3                                |                                       | Te mi        |                                                  |
| N (m = 3                              |                                       | Nam-         |                                                  |
| Z=500 in                              |                                       | Z=50         | UMM                                              |

![](_page_57_Picture_2.jpeg)

School of Engineering

![](_page_57_Picture_4.jpeg)

### Microcoaxial Cables for RF Modules

#### **Main Components**

- Core metal signals or power
- Dielectric insulate core
- Shield metal ground
- Jacket protect further handling (not a focus in this work)

#### Advantages

- Electric and magnetic fields kept within dielectric
- Protection from external fields
- Correlation between coaxial geometry and dielectric properties to desired impedance

D. M. Pozar, Microwave Engineering, Addison-Wesley, 1990.

![](_page_58_Picture_11.jpeg)

School of Engineering

![](_page_58_Figure_13.jpeg)

![](_page_58_Picture_14.jpeg)

### 2 Port Vector Network Analyzer and S-Parameters

![](_page_59_Figure_1.jpeg)

![](_page_59_Figure_2.jpeg)

60

### 2 Port Vector Network Analyzer and S-Parameters

Relate Reflected and Transmitted Waves With S - Parameters

$$b_{1} = s_{11}a_{1} + s_{12}a_{2}$$

$$b_{2} = s_{21}a_{1} + s_{22}a_{2}$$

$$\begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix} = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix}$$

S-Parameters May be Related Back to Complex Impedances

![](_page_60_Figure_4.jpeg)

![](_page_60_Picture_5.jpeg)

HP, "S-Parameters Theory and Applications"

### **De-Embedding**

S-Parameter Matrix Gathered from VNA are that of the Substrate and Wire. De-Embedding is Necessary to Remove Substrate Effects.

![](_page_61_Figure_2.jpeg)

HP, "S-Parameters Theory and Applications"

DRAPER

62

![](_page_61_Picture_4.jpeg)

### **De-Embedding**

![](_page_62_Figure_1.jpeg)

# $\begin{bmatrix} S_{Measured} \end{bmatrix} = \begin{bmatrix} S_{FA} \end{bmatrix} \begin{bmatrix} S_{DUT} \end{bmatrix} \begin{bmatrix} S_{FB} \end{bmatrix}$ $\begin{bmatrix} S_{FA} \end{bmatrix}^{-1} \begin{bmatrix} S_{Measured} \end{bmatrix} \begin{bmatrix} S_{FB} \end{bmatrix}^{-1} = \begin{bmatrix} S_{DUT} \end{bmatrix}$

Preferably  $S_{FA}$  and  $S_{FB}$  are Measured Directly Using the VNA

(Known as 2-Port De-embedding)

This Fabrication Process Makes that Difficult

![](_page_62_Picture_6.jpeg)

HP, "S-Parameters Theory and Applications"

![](_page_62_Picture_8.jpeg)

### 4 Port VNA Measurements

![](_page_63_Figure_1.jpeg)

#### 4 Port VNA Measurement 10 MHz – 26.5 GHz

Network Theory Still the Same

![](_page_63_Figure_4.jpeg)

DRAPER

64

![](_page_63_Picture_5.jpeg)

School of Engineering

### **Cross-Talk Test**

Bare Au Wires with 25.4 µm Core Bonded to GSG Pads – Imitate IO on IC Signal to Signal Pitch – 0.50 mm

![](_page_64_Picture_2.jpeg)

#### Used Same RF Boards $HfO_2$ and Parylene Micro Coax Signal to Signal Pitch – 0.5 mm

![](_page_64_Picture_4.jpeg)

![](_page_64_Picture_5.jpeg)

![](_page_64_Picture_6.jpeg)